English

About Us

The Peruvian Association for Attention Deficit (APDA) is a nonprofit organization founded by mothers of ADHD kids; its main goal is to spread up-to-date information about this disorder.

APDA started its activities on ADHD late in 2002 with a round table discussion, in 2004 it held a one day course and in 2007 a two day international course. The School for Mothers —led by our president— meets periodically with mothers who have recently come in contact with us. Since April, 2005, the president of our institution also holds eight-week workshops on ADHD Coaching for mothers; the fifty second workshop was completed in November 2011.

APDA issues an electronic newletter which is sent —without charge— to more than 8,500 e-mails of people interested in ADHD; it contains articles written for us by Peruvian and foreign expert professionals, as well as real-life stories written by parents and by people with this disorder. Twenty seven newsletters have been issued so far; all of them can be read on this website: link.

APDA’s members participate in international events on ADHD and also promote the spread of knowledge about this disorder in the Peruvian media —through interviews, letters and articles—; they also participate in debates when they consider that the public has received information that is not true. Our institution also gives lectures in schools of Lima, addressed to teachers, psychologists and parents.

Since April, 2004, APDA is a member of the IBEROAMERICAN FORUM, an institution which coordinates and brings together institutions and people in spanish and portuguese speaking countries working in the field of ADHD. It meets at the CHADD International Conference each year, since 2000.

The following is APDA’s board of directors: president Beatriz Duda, vice-president Maya Echegaray and treasurer Rosa Maria Gastañeta. Our advisor neurologist is Dr. Armando Filomeno; our advisor coach is Ose Schwab.

My four decade relationship with Attention-Deficit/Hyperactivity Disorder (AD/HD), Armando Filomeno, M.D.

My first memories of a patient with what is known nowadays as AD/HD go back to my medical student’s days in Cayetano Heredia in the early sixties when I met a girl in the relation who was overly active  and whose behavior was out of control. My advice was to have her seen by a  neurologist; by her father’s choice she was seen by a neurosugeon with a busy neurological practice, whose diagnosis was dysrhythmia and prescribed an antivonvulsant which did not do any good to the girl, who continued having difficulties at school and home, and later had serious problems in her private life, which have become worse as time went by and continue up to now.

Through my readings I knew what was being called for the last couple of years Minimal Cerebral Dysfunction or Minimal Brain Dysfunction and I had read the first monograph that had been published on the subject (1); as  happens with many books, I lent it 38 years ago and it was never given back to me. I was also aware that  amphetamines were the most effective treatment, especially dextroamphetamine, but as I still was a medical student I couldn’t prescribe, so there was very little I could do for the girl, besides giving my relative the opinion of an beginner.

During my internship rotation through pediatrics in Lima, even though I was successful to have my boss subscribe to important foreign journals, I was not able to convince her about the existence of the syndrome and as far as I can remember, I never got to treat with amphetamines the patientes whom I made  this diagnosis in the outpatient clinic. I have to acknowledge, though, that we were very busy in our daily work with life and death problems like meningitis and encephalitis.

During my residency in adult and pediatric neurology at the University of Rochester, in the U.S.A., by the end of the sixties and beginning of the seventies, Minimal Brain Dysfunction (MBD) was a common diagnosis and the treatment used to be done with dextroamphetamine (Dexedrine) and also wityh methylphenidate (Ritalin).

Upon returning to Peru at the beginning of the seventies I met dysrhythmia again which ——besides being used as a euphemism for epilepsy—  was a diagnosis which used to be made for problems that ranged from misbehavior to mental retardation (MBD was in the middle of them). What gave some sort of unity to all this was the presence of EEG abnormalities, more imaginary than real. The diagnosis used to be made by neurologists, neurosurgeons and psychiatrists, and the treatment was done with  anticonvulsants and a few innocuous and useless drugs. I declared war to this diagnosis and treatment and I remember that at the 1974  Peruvian Congress of Psychiatry, Neurology and Neurosurgery I lectured on this subject in a humorous and ironic way —using slides with cartoons— which was considered funny by many people but did very little to change the concepts, diagnoses and treatments. I made some enemies with that lecture, though, because people who felt caught in fault said things like what is this young man up to?

I remember also how the diagnosis of Minimal Brain Dysfunction —beside which the diagnosis of Hyperkinetic Syndrome coexisted— in the eighties gradually turned into Attention Deficit Disorder  —with and without hyperactivity—, and in the last ten years it became Attention-Deficit/Hyperactivity Disorder (AD/HD), with its three types. However, this has been the least important  of all the events for patients, as terms have changed more than concepts.

It has been  more important that for several years it was impossible to buy methylphenidate in Peruvian drug stores and it was necessary to order it from Mexico —through a stewardess of Aeroperú who later died in an plane crash facing Lima’s seashore—  or from Ecuador, or that  for a while it was necessary to prescribe coffee  for AD/HD, which caused many a grandma to say how does this young doctor dare to prescribe coffee to my grandson!

In the last three years, the news was that methylpyenidate became —due to excessive bureaucratic zeal— a drug that needed a prescription form with two copies and an extensive information written on the patient, and that in the last year it must be prescribed in a special form that has to be bought at the Ministry of Health. This has made more difficult to buy Ritalin than cocaine in Lima. Another bad news is that the insurance companies frequently do not pay for the treatment expenses, saying that Ritalin is a stimulant…, therefore it is harmful for the brain…, and so forth.

At this point I must mention the negligence of the pharmaceutical laboratories that developed dextroamphetamine and methylphenidate; the first one has not sold its useful drug in this country for about four decades, and the second one has not introduced in Peru its eight-hour preparation (Ritalin LA) yet. Besides, the OROS twelve-hour methylphenidate (Concerta) is not sold in Peru yet; I have been told that it will happen in the next six months. It is a striking fact that such a high population of children, adolescents and adults is being neglected wheras several laboratories fight against each other for treating disorders that are several times less common, with a dozen drugs for them on the market.

The appearance of the Peruvian Association for Attention Deficit (APDA)’s electronic newsletters more than two years ago meant —for an increasingly numerous and wide public— the possibility of obtainig information on many aspects of AD/HD, like the usefulness of drugs or the lack of evidence on the effect of some alternative treatments which have been introduced in the country; the newsletter enjoys an independence that makes some people feel uneasy. Since October 2004 APDA’s website has meant  —for the sake of parents, patients and professionals— having information permanently at hand.

I have had the privilege of attending meetings on AD/HD and Tourette’s Syndrome in Washington, Cancun, Nashville, Buenos Aires and Dallas in the last four years which have allowed me to get in touch with professionals of the highest level; in that context, it has been highly significant for me to meet in most of these places a lecturing physician who has studied or trained at the University of Rochester (2). I have been able to exchange with them memories of the Strong Memorial Hospital, the department of neurology and its illustrious founding chief (3), the school of medicine, the Eastman School of Music with its Sunday student recitals —with free admission of course—  Rochester’s arctic winters, etc.

I remember  very satisfactory periods in my medical activity, like when I was chief resident in neurology and then in pediatric neurology in Rochester, when I was a fellow at Johns Hopkins or when I did full-time teaching in neurology at Cayetano Heredia, and was the first pediatric neurologist at the teaching hospital. However, I can say that I wouldn’t give up my present professional work in a field I like to call Pediatric Neuropsychiatry —in which APDA’s electronic newsletters and web site are an important aspect.

____________________
This article’s topic was the basis for the lecture Attention deficit in pediatric patients. AD/HD in the last 40 years, given on March 31, 2005 at the international  scientific meeting for the 40th anniversary of the Hugo Pesce – Alberto Hurtado  medical school class of San Fernando (San Marcos University) and Cayetano Heredia University.

The original Spanish version of this article appeared in the newsletter nº 10 issued by the Asociación Peruana de Déficit de Atención (APDA), on December 15, 2005; it was slightly modified for the website.

Email:  armandofilomeno@telefonica.net.pe

References
(1) Bax, Martin and Ronald Mc.Keith. Minimal Cerebral Dysfunction. Little Club Clinics in Developmental Medicine nº 10. London: Spastics Society with Heinemann. 1963
(2) Washington 2002: Edward Kaplan, M.D. a streptococcologist (as he likes to be called) now at the U. of Minnesota; he graduated from college at the U. of R. Cancun 2003: Jeffrey Newcorn, M.D, a child and adolescent psychiatrist, at  Mount Sinai, New York; he went to college and medical school at the U. of R. Nashville 2004: Michael Finkel, M.D. who did his neurology residency in Rochester, now at the Cleveland Clinic in Naples, Florida; he is  in charge of international relations at CHADD.
(3) Robert J. Joynt, M.D., Ph.D., Distinguished University Professor of Neurology. Formerly, Dean of the School of Medicine and founding chairman of its Department of Neurology at the University of Rochester;  my mentor in neurology.

Hope, resiliency and success: AD/HD interventions for a lifetime, Armando Filomeno, M.D.

Review of CHADD’s 17th Annual International Conference on Attention-Deficit/Hyperactivity Disorder, October 27-29, 2005. Dallas, Texas, USA

The title of this year’s conference shows an emphasis on finding out what makes the prognosis of this disorder good and what can be done towards that goal.

More than one thousand persons attended this year’s conference, many of them from foreign countries —beeing as usual quite diverse—:mostly ADHD persons’ parents and professionals from the many areas that deal with this disorder. This review, by necessity, will be limited to the activities in which  Beatriz Duda —APDA’s president— and myself participated.

Among the Special Training for Professionals’ sessions on Wednesday  26,  there was a workshop on Skills for coaching adults with AD/HD, held by Jodi Sleeper-Triplett and Sandy Maynard, which dealt with how to motivate adults with this disorder, for coaching to be effective. There were also interesting half-day conferences  on Neuropsychological research and clinical best practices in the assessment of AD/HD and on  Advanced treatment of AD/HD —both of them across the lifespan—, given by CHADD President Anne Teeter Ellison, Margaret Semrud-Clikeman and Sam Goldstein.

In the half-day Pre-conference Institutes —in the morning of Thursday 27—, Arthur Robin gave an excellent lecture on Helping adults with AD/HD succeed  in marriage and parenting; he talked about the day-to-day problems in families with one or more AD/HD members, and what strategies are useful for success. Stephen Pliszka gave a well balanced view of AD/HD and comorbid disorders: diagnosis and treatment.

On Thursday afternoon the Iberoamerican Forum was held. Orlando Villegas lectured on Opositional defiant disorder and Conduct disorder. I presented the results of a study on AD/HD teaching in medical school in Peru (www.deficitdeatencionperu.org/estudioperu.htm). María Teresa Hill —the reelected president of the Forum— and Gabriela Delgado Paulsen presented the project of a suvey on how much teachers in Iberoamerica know about AD/HD; the study will produce a guide for teachers.

The opening keynote address —with massive attendance— was on Thurday evening on The bully, the bullied and the bystander, given by Barbara Coloroso, a well-known lecturer and author of books on education.

In the morning of Friday 28 —in the main conference room— James Swanson lectured on the molecular aspects of AD/HD; among other aspects, he talked about a seven repeat mutation of the D4 dopamine receptor, which is present in many people with AD/HD and seems to confer an evolutionary advantge. Among other lecturers, he made fun of Tom Cruise, who is well known for his ridiculous comments on Ritalin, AD/HD and related issues.

On Friday afternoon, Glen Elliott handled in a very neat way the drug treatment for the core symptoms of AD/HD.  Sam Goldstein —despite not having technical equipment for this lecture— presented a good review on what can be done to encourage resiliency, the master key for success for those who have AD/HD (resilience, a concept borrowed from Physics, is the ability to overcome adversity).

In the evening, the Networking sessions by track (Interest group) were held; we attended the Spanish language and culture/International, facilitated by José Bauermeister, which had a remarkable attendance —mostly by iberoamericans— where common interest subjets for our countries were discussed. Concern was expressed about the declarations by fake experts who question the scientific facts on the diagnosis and treatmento of AD/HD and hereby uselessly confuse and alarm people who are not well informed.

In the morning of Saturday 29 —in the main conference room— Sam Goldstein, a remarkable lecturer, presented testimonies of people who have succeeded through resilience; he also mentioned that beside them, many failed to do so. In the Research symposium, Marshalyn Yeargin-Allsopp announced the National Children’s Study —in which AD/HD will also be studied— with the participation of 100,000 pregnat women and children, which will be followed-up  until age 21 years,  whose preliminary results will be known in the years 2010-2011; the cost of the study will be 2.7 billion dollars of federal funds. The morinig research session concluded with Regina Bussing’s study which showed that women and ethnic minorities have fewer chances of having a correct diagnosis and treatment for their AD/HD.

On Saturday afternoon, Thomas Brown lectured —with his well-known ability— on the Dilemmas in the treatment of complicated cases of AD/HD, and Chris Zeigler Dendy handled, with great efficiency, Developing an educational plan to address executive function deficits.

CHADD’s 18th Annual International Conference on AD/HD State of the Art: Science and Research in Practice was annouced, which will be held on October 25-28, 2006, in Chicago. U.S.A.

CHADD’s conferences, besides offering up-to-date knowledge, make possible to meet people from all over the world  —especially from Iberoamerica in our case—, with affinity and comon interests. We were pleased to meet Isabel Rubió, president of ADANA,  and to see again Ernestina Pergolini, president of Fundación TDAH from Argentina, Doris Ryffel, and Norma Echavarría; we are thankful to the latter for the article of AD/HD in women, which she has sent us for our December newsletter. We were sorry that Michael Finkel and Rubén Scandar could not attend the conference.

Link to a review of CHADD’s 2004 conference (in Spanish).

____________________
Dr. Filomeno is founding advisor neurologilst to the Peruvian Association for Attention Deficit (APDA).
The original Spanish text ot this review may be read in this link.

Are present day worldwide controls on the sale of methylphenidate justified?, Armando Filomeno, M.D.

¿What proof exists that methylphenidate is a drug that can cause addiction or that it has a high abuse potential that justifies the present day control on its sale?

None; many medical articles endorse this statement. The present day standpoint, widely accepted by physicians who have knowledge and experience in the subject, is that far from producing or favoring addiction, methylphenidate protects ADHD patients from that risk. The studies have been done on stimulant drugs; as methylphenidate has been the most widely used stimulant drug in the last 30 years, the results apply especially to it.

There are at least twelve studies in the academic medical literature that endorse this, against one single study —which has been widely criticized due to its defective methodology— which states otherwise. This is thoroughly discussed by Dr. Russel Barkley — a pychologist who is an authority in the field of ADHD— in an article published in Pediatrics in January 2003:

Russell A. Barkley, Mariellen Fischer, Lori Smallish and Kenneth Fletcher. Does the Treatment of Attention-Deficit/Hyperactivity Disorder with Stimulants Contribute to Drug Use/Abuse? A 13-year Prospective Study. Pediatrics, Vol. 111 n.º 1. January 2003 (pages 98 and 99 are especially pertinent).
Link to the full text article:
http://pediatrics.aappublications.org/cgi/content/full/111/1/97
Link to an abstract of the article:
http://pediatrics.aappublications.org/cgi/content/abstract/111/1/97

Dr. Joseph Biederman from Harvard Medical School and the Massachusetts General Hospital —a recognized medical authority in the field of ADHD— demonstrated, in two excellent articles published in 1999 and 2003, that stimulant drugs protect ADHD patients from addiction.

Joseph Biederman, Timothy Wilens, Eric Mick, Thomas Spencer and Stephen V. Faraone. Phamacotherapy of Attention-deficit/Hyperactivity Disorder Reduces Risk for Substance Use Disorder. Pediatrics, Vol. 104, n.º 2, August 1999.
Link to the full text article:
http://pediatrics.aappublications.org/cgi/content/full/104/2/e20
Link to an abstract of the article:
http://pediatrics.aappublications.org/cgi/content/abstract/104/2/e20

Joseph Biederman. Pharmacotherapy for Attention-Deficit/Hyperactivity Disorder (ADHD) Decreases the Risk for Substance Abuse: Findings from a Longitudinal Follow-Up of Youths With and Without ADHD. Journal of Clinical Psychiatry. 2003. Vol. 64 (suppl 11).
Link to the full text article:
http://www.psychiatrist.com/supplenet/v64s11/v64s1101.pdf
Link to an abstract of the article:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14529323&query_hl=10&itool=pubmed_docsum

Dr. Nora Volkow, Director of the National Institute on Drug Abuse, NIH, and the distinguished neuroscientist Dr. James Swanson, have shown that, after oral administration,  methylphenidate’s slow entrance to the brain and its even slower exit set it apart from drugs which produce addiction.

Volkow, N.D. and James M. Swanson. Variables That Affect the Clinical Use and Abuse of Methylphenidate in the Treatment of ADHD. American J. Psychiatary. 160:1909-1918. 2003.
Link to the full text article:
http://ajp.psychiatryonline.org/cgi/content/full/160/11/1909
Link to an abstract of the article
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14594733

There is evidence that the abuse potential of methylphenidate is lower in ADHD people, probably due to the increased number of dopamine transporters they have.

Kollins, Scott H. Comparing the Abuse Potential of Methylphenidate Versus Other Stimulants: A Review of Available Evidence and Relevance to the ADHD Patient. J Clin Psychiatry. 2003;64(suppl 11):14-18.
Link to the full text article (especially page 17):
http://www.psychiatrist.com/supplenet/v64s11/v64s1103.pdf
Link to an abstract of the article:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=pubmed&cmd=Retrieve&dopt=AbstractPlus&list_uids=14529325&query_hl=12&itool=pubmed_docsum

The abuse potential of methylphenidate would be limited to the abnormal routes of administration, like intravenous injection and inhalation.

James M. Swanson and Nora D. Volkow. Serum and brain concentrations of  methylphenidate: implications for use and abuse. Neurosci Biobehav Rev. 2003 Nov,27(7):615-21.
Link to an abstract of the article:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14624806

The phenomenon known as sensitization in experimental animals has never been shown to happen in humans. There is no evidence that children treated with methylphenidate have a higer risk of addiction in adult life. Researchers from NYU Child Study Center have studied this aspect thoroughly:

Klein R. and Mannuzza S. Is there stimulant sensitivity in children? J Atten Disord. 2002;6 Suppl 1:S61-3
Link to an abstract of the article:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=12685520

Klein R. and Mannuzza S. Does stimulant treatment place children at risk for adult substance abuse? A controlled, prospective follow-up study. J Child Adolesc Psychopharmacol 2003 Fall; 13(3):273-82.
Link to an abstract of the article:
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=pubmed&dopt=Abstract&list_uids=14642015

Finally, besides all the evidence that has been shown, it is reasonable to think that if methylphenidate helps people with ADHD normalize their lives —a fact demonstrated beyond any doubt— the risk of drug addiction, due to repeated frustrations and decreased likelyhood of success, must necessarily be lower in those who are being or who have been treated with this drug.

____________________
This translated text has been extracted from:” Reunión con la Ministra de Salud sobre la venta del Ritalin”, published in APDA’s newletter nº 5.
Modified in September2006.
Dr. Filomeno’s e-mail is: armandofilomeno@telefonica.net.pe

Genetic and environmental etiologies of ADHD, James M. Swanson, Ph.D.

I. Introduction. DSM-IV uses “phenomenological” rather than “etiological” subtypes of ADHD, but in DSM-V, an emphasis on etiology has been promised. Genetic and environmental etiologies have been proposed to account for the behavioral and neuropsychological characteristic of ADHD, but it is becoming increasingly clear that complex diseases such as ADHD result from the interplay of genetic and environmental risk factors.

II. Molecular Genetic Studies. The initial studies used the candidate gene approach based on the “dopamine hypothesis” of ADHD (Wender, 1971; Levy, 1991; Volkow, 1995).  Two candidate genes were targeted— the dopamine transporter (DAT) gene (Cook et al., 1995) with a 40-bp VNTR in the 3’ untranslated (non-coding) region that defined the primary alleles by 9 or 10 repeats (9R or 10R), and the DRD4 gene, with a 48-bp VNTR in a coding region (exon 3) that defined the primary alleles 2, 4, or 7 repeats (2R, 4R, or 7R).  In the initial studies of ADHD clinical samples, Cook et al (1995) reported that an increased prevalence (0.70 to 0.85) and transmission (0.50 to 0.60) of the most prevalent 10R-repeat DAT allele, and LaHoste et al  (1996) observed a higher than expected frequency (0.28 versus 0.12) of the DRD4 7R allele. In general, subsequent studies replicated the initial findings of association of ADHD with the DRD4 gene but not with the DAT gene (see Li et al, 2006). The DRD4 7R allele shows signs of recent (50,000 years ago) positive selection, which may be related to migration and the “Out of Africa” expansion of the human population (see Wang et al, 2005). Ethnic variations exist in population prevalence of the DRD4 allele, with lower prevalence in some ethnic groups in Asia (see Leung et al, 2005) and higher in South America (see Hutz et al., 2000). However, in general findings are similar in ADHD groups from South America and North America (Rohde et al, 2005), but in some South American clinical samples there are indications of interaction of the DRD4 and DAT genes (Roman et al, 2001; Carrasco et al, 2006). Recently, Brookes et al (2006) assessed 51 candidate genes in pathways related to dopamine, norepinephrine and serotonin, and confirmed association of ADHD with the DRD4 and DAT genes, and also provided suggestive evidence of association of ADHD with 16 other genes.

The functional significance of the DRD4 7R allele has been investigated by multiple groups (Swanson et al., 2000; Manor et al., 2002; Langley et al., 2003; Bellgrove et al., 2005), using neuropsychological tasks that required speeded response and comparing subgroups based on the 7-present and 7-absent genotype (i.e., those with and without a 7R allele) on measures of reaction time (RT) and RT variability.  In general, the 7-present subgroups had faster and less variable responses on choice RT tasks than the 7-absent subgroups. Based on performance on the Matching Familiar Figures test, Langley et al. (2003) suggested ADHD children with the 7-present genotype had an impulsive style of responding, and Kieling et al. (2006) provided similar evidence of impulsive responding on the Continuous Performance Test. These studies provided support for the speculation by Swanson et al (2000 and 2007) that the presence of the 7R allele identifies a genetic variant of ADHD characterized by a cognitive style that produces behavioral excesses without the usual cognitive deficits (slow and variable RT), while the absence of the 7R allele identifies an environmental variant of ADHD characterized by both behavioral excesses and cognitive deficits on speeded tasks (slow and variable RTs).

Genome scans (see Fisher et al., 2002 and Bakker et al., 2003) have also been used in attempts to discover additional genes involved in the etiology of ADHD.  Neither of these genome scans revealed a strong signal from a specific location on the human genome to direct the search for a specific gene, and the reported weak signals were different for these two genome scans (Fisher et al: 5p, 10q, 12q, and 16p; Bakker et al: 15q, 7p, and 9q). Ogdie et al (2003) provided a report on an expansion of the sample reported by Fisher et al (2002), and reported a signal for a gene in a region on 17p11 previously linked to autism. Arcos-Burgos et al. (2005) conducted a family study of a population isolate and identified linkage to loci at 4q13.2, 5q33.3, 11q22, and 17p11.

The lack of a strong signal from genome scans does not discount the existence of genes with high probability risk alleles, of multiple genes that combine to confer risk for ADHD, or of genes with effects that depend on interactions with environmental factors.

III. Environmental Studies. Taylor and Rogers (2005) review this area in detail. Linnett et al (2003) reviewed the literature on maternal lifestyle factors that exposed the developing fetus to nicotine, alcohol, caffeine, and stress, and only nicotine conferred risk for ADHD (see Millberger et al,  1996 and Thapar et al., 2003). Schmidt et al (2006) extended this finding and showed smoking during pregnancy was associated with ADHD-Inattentive Type. In a population sample, Braun et al (2006) reported 31.7% were exposed to prenatal tobacco exposure, which was associated with ADHD diagnosis (odds ratio = 2.5, with a population attributable fraction = 18.4%). Braun et al. (2006) also showed that exposure to very low levels of lead (in the range of 1-2 ug/dL) was common (7.9%) and was associated with ADHD (odds ratio = 4.1, with a population attributable fraction = 21.1%).

Barker et al (1989) proposed the hypothesis of developmental origins of health and disease (DOHaD), which was been elaborated by Gluckman and Hanson (2004). A similar hypothesis was proposed by Lou (1996), who revised the notion that a variety of types and degrees of stress during pregnancy produced specific minimal brain damage (Bax and McKeith, 1962) to striatal dopamine neurons and as a consequence, behavioral excesses and attentional deficits manifested as symptoms of ADHD. Recently, in a PET study of adolescents born premature, Neto et al (2002) documented low levels of extracellular dopamine in striatal regions, consistent with the prediction of Lou (1996).  In separate studies, similar abnormal (blunted) catecholamine response to stress was documented in children with a history of traumatic brain injury (Konrad et al, 2003) and ADHD (Wigal et al., 2003). Swanson et al (2007) review these and other studies and suggested that the etiology of an environmental variant of ADHD (associated with the 7-absent genotype) was related to subtle damage to striatal dopamine neurons during fetal development, while the etiology of a genetic variant (associated with the 7-present genotype) was related to the inheritance of a subsensitive dopamine receptor.

IV. Gene-Environment Interaction. Few molecular genetic studies of ADHD have addressed gene-environment interactions.  Kahn et al (2003) evaluated maternal smoking and the DAT gene and found for cases with maternal smoking during pregnancy, ADHD symptoms were more severe in individuals homozygous for the most frequent allele of the DAT gene (the 10R/10R genotype) but not if other alleles were present (e.g., the 9R/10 or the 9R/9R genotype).  Brookes et al (2006) evaluated the DAT gene and two environmental factors, maternal alcohol consumptions (any vs. none) and heavy smoking (at least 20 cigarettes/day), during pregnancy. They reported linkage disequilibrium (non-random association of alleles) was present only those cases where maternal alcohol consumption was reported, and that the interaction of DAT genotype with maternal smoking during pregnancy was not significant.

V. Conclusions and Next Steps. Much larger sample sizes will be required to go beyond these important first steps to evaluate gene by environment interactions related to ADHD. The National Children’s Study (NCS) (see www.nationalchildrensstudy.gov) planned for the USA will recruit a large birth cohort of 100,000 children and to obtain broad measures of exposure and outcome taken in 16 visits scheduled across stages of development. As outlined in Landrigan et al. (2006), the NCS assessments will occur before conception; 3 times during pregnancy; at birth; at 1, 6, 12, and 18 months of age in early childhood; at 3, 5, 7, 9, and 12 years of age in childhood; at 16 and 20 years of age in adolescence. This should provide a large sample of affected children (3,000 to 5,000 with diagnoses of ADHD, depending on diagnostic criteria) with careful documentation of genetic and environmental exposures that will allow for evaluation of critical issues about the genetic and environmental contributions to ADHD as well as other childhood disorders.

Swanson et al (2007) suggested the evaluation of subtypes of ADHD would be to consider two types of etiologic factors – genetic and environmental. The review presented here suggests the genetic factors should include at a minimum the DRD4 and DAT genotypes, and the environmental factors should include at a minimum some environmental toxicants (nicotine, alcohol, and lead) and some pregnancy factors (preterm birth and small size due to growth restriction).

____________________
James M. Swanson, Ph.D. Professor of Pediatrics; Director, Child Developmental Center, University of California, Irvine, USA.

Dr. Armando Filomeno thanks the distinguished psychologist and neuroscientist for this article which he translated into Spanish for APDA’s electronic newsletter nº 15, issued on March 25, 2007.

References.
Arcos-Burgos M, Castellanos FX, Pineda D, Lopera F, Palacio JD, Palacio LG, Rapoport JL, Berg K, Bailey-Wilson JE, Muenke M. (2004). Attention-Deficit/Hyperactivity Disorder in a Population Isolate: Linkage to Loci at 4q13.2, 5q33.3, 11g22, and 17p11. Am J Hum Genetics. 75: 998-1014.

Bakker SC, van der Meulen EM, Buitelaar JK, Sandkuijl LA, Pauls DL, Monsuur AJ et al. (2003). A whole-genome scan in 164 Dutch sib pairs with attention-deficit/hyperactivity disorder: suggestive evidence for linkage on chromosomes 7p and 15q. Am J Hum Genet. 72:1251-1260.

Barker DJO, Osmond C, Winter PD, Margetts B and Simmonds SJ. (1989). Weight in infancy and death from ischaemic heart disease. Lancet. 2:577-580.

Bax M and McKeith RM, eds. Minimal Cerebral Dysfunctions. Clinics in Developmental Medicine. Lavenham, Suffolk: The Lavenham Press LTD, 1962.

Bellgrove MA, Hawi Z, Lowe N, Kirley A, Robertson IH and H Gill. (2005). DRD4 gene variants and sustained attention in ADHD: effects of associated alleles at the VNTR and -521 SNP. Am J Med Genet B Neuropsychiatr Genet. 136:81-6.

Braun J, Kahn RS, Froehlich T, Aulnger P and BP Lanphear. (2006). Exposures to Environmental Toxicants and Attention Deficit Hyperactivity Disorder in US Children. Environmental Health Perspectives. 114:1904-9.

Brookes K, Xu X, Chen W, Zhou K, Neale B, Lowe N, Aneey R, Franke B, Gill M, Ebstein R, Buitelaar J, Sham P, Campbell D, Knight J, Andreou P, Altink A, Amold R, Boer F, Buschgens et al.  (2006). The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes.  Molecular Psychiatry.  11: 934-953.

Brookes KJ, Mill J, Guindalini C, Curran S, Xu, X, Knight J, Chen CK, Huang YS, Sethna V, Taylor E, Chen W, Breen G, Asherson P. (2006). A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy.  Arch Gen Psychiatry. 63: 74-81.

Carrasco X, Rothhammer P, Moraga M, Henriquez H, Chakraborty R, Aboitiz F, Rothhammer F. (2006). Genotypic interaction between DRD4 and DAT1 loci is a high risk factor for ADHD in Chilean families.Am J Med Genet B Neuropsychiatr Genet. 141:51-4 .

Cook EH, Jr., Stein MA, Krasowski MD, Cox, NJ, Olkon DM, Kieffer JE, et al. (1995). Association of attention deficit disorder and the dopamine transporter gene. Am J Hum Genet. 56:993-998.

Crowe RR. (1993). Candidate genes in psychiatry: an epidemiological perspective. Am J Med Genet. 48:74-77.

Fisher SE, Francks C, McCracken JT, McGough JJ, Marlow AJ, MacPhie IL et al.(2002). A genome wide scan for loci involved in attention-deficit/hyperactivity disorder. Am J Hum Genet. 70:1183-1196.

Gillman M. (2005). Developmental Origins of Health and Disease. New England Journal of Medicine. 353:1848-50.

Gluckman PD and MA Hanson. (2004). Living with the Past: Evolution, Development, and Patterns of Disease. Science. 305: 1733-6.

Hutz MH, Almeida S, Coimbra CE Jr, Santos RV, Salzano FM. (2000). Haplotype and allele frequencies for three genes of the dopaminergic system in South American Indians. Am J Hum Biol. 12:638-645.

Kahn RS, Khoury J, Nichols WC, Lanphear BP. (2003). Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors.  J Pediatrics. 143: 104_110.

Kieling C, Roman T, Doyle AE, Hutz MH, Rohde LA. (2006). Association between DRD4 gene and performance of children with ADHD in a test of sustained attention. Biol Psychiatry. 10:1163-5.

Knopik VS, Health AC, Jacob T, Slutske WS, Bucholz KK, Madden PAF, Walron M, Martin NG.  (2006). Maternal alcohol use disorder and offspring ADHD: disentangling genetic and environmental effects using a children-of-twins design.  Psychological Medicine. 36: 1461-1471.

Konrad K, Gauggel S, Schurek J. (2003). Catecholamine functioning in children with traumatic brain injuries and children with attention-deficit/hyperactivity disorder. Brain Res Cogn Brain Res. 16:425-33.

LaHoste GJ, Swanson JM, Wigal SB, Glabe C, Wigal T, King N, Kennedy JL. (1996). Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder. Molecular Psychiatry. 1:121-124.

Landrigan PJ, Trasande L, Thorpe LE, Gwynn C, Lioy PJ, D’Alton ME, Lipkind HS, Swanson J, Wadhwa PD, Clark EB, Rauh VA, Perera FP, Susser E.  (2006). The National Children’s Study: a 21-year prospective study of 100,000 American children. Pediatrics 118:2173-86.

Langley K, Marshall L, van den Bree M, Thomas H, Owen M, O’Donovan M et al. (2004). Association of the dopamine D4 receptor gene 7-repeat allele with neuropsychological test performance of children with ADHD. Am J Psych 161:133-138.

Leung PWL, Lee CC, Hung SF, Ho TP, Tang CP, Kwong SL, Leung SY, Yuen ST, Lieh-Mak F, Oosterlaan J, Grady D, Harxhi A, Ding YC, Chi HC, Flodman P, Shuck S, Spence MA, Moyzis R, Swanson JM. (2005). Dopamine receptor D4 (DRD4) gene in Han Chinese children with attention deficit/hyperactivity disorder (ADHD): Increased prevalence of the 2-repeat allele. Am J Med Genet B Neuropsychiatr Genet 133(1):54-6.

Levy F. (1991). The dopamine theory of attention deficit hyperactivity disorder (ADHD). Australian and New Zealand Journal of Psychiatry. 25:277-283.

Li D, Sham PC, Owen MJ, He L. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet. 15: 2276-84.

Linett K, Dalsgaard S, Obel C, Wisbord K, Henriksen TB, Rodriguez A, Kotimaa A, Moilanen I, Thomsen PH, Olsen J, Jarvelin M. (2005). Maternal Lifestyle Factors in Pregnancy Risk of Attention Deficit Hyperactivity Disorder and Associated Behaviors: Review of the Current Evidence. Am J Psychiatry. 160:1026-1040.

Linett KM, Wisborg K, Agerbo E, Sechor NJ, Thomsen PH, Henriksen TB. (2006). Gestational age, birth weight, and the risk of hyperkinetic disorder. Arch Dis Child. 91:655-60.

Lou HC. (1996). Etiology and pathogenesis of attention-deficit hyperactivity disorder (ADHD): significance of prematurity and perinatal hypoxis-haemodynamic encephalophy. Acta Paediatr. 85: 1266-1271.

Manor I, Tyano S, Eisenberg J, Bachner-Melman R, Kotler M, Ebstein RP. (2002). The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA). Mol Psychiatry. 7:790-794.

Millberger S, Biederman J, Faraone SV, Chen L, Jones L.  (1996). Is maternal smoking during pregnancy a risk factor for attention deficit hyperactivity disorder in children? Am J Psychiatry. 153: 1138-1142.

Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S. (2002). Case-Control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug-use during pregnancy. J Am Acad Child Adolesc Psychiatry. 41:378-85.

Neto P, Lou H, Cumming P, Pryds O, Gjedde A. (2002). Methylphenidate-evoked potentiation of extracellular dopamine in the brain of adolescents with premature birth. Ann N Y Acad Sci. 965:434-439.

Ogdie M, Macphie IL, Minassian SL, Yang M, Fisher SE, Francis CF, Cantor RM, MacCracken JT, McGough JJ, Nelson SF, Monaco AP, Smalley SL. (2003). A genome wide scan for attention-deficit/hyperactivity disorder: suggestive linkage on 17p11.  Am J Hum Genet. 72:1268-1279.

Rohde LA, Szobot C, Polanczyk G, Schmitz M, Martins S, Tramontina S. (2005). Attention-deficit/hyperactivity disorder in a diverse culture: do research and clinical findings support the notion of a cultural construct for the disorder? Biol Psychiatry 57:1436-41.

Roman T, Schmitz M, Polanczyk G, Eizirik M, Rohde LA, Hutz MH. (2001). Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene. Am J Med Genet. 105:471-8.

Schmitz M, Denardin D, Laufer Silva T, Pianca T, Hutz MH, Faraone S, Rohde LA. (2006). Smoking during pregnancy and attention-deficit/hyperactivity disorder, predominantly inattentive type: a case-control study. J Am Acad Child Adolesc Psychiatry. 11:1338-45.

Swanson JM, Sunohara GA, Kennedy JL, Regino R, Fineberg E, Wigal T, Lerner M, Williams L, LaHoste GJ, Wigal S.  (1998). Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family-based approach.  Molecular Psychiatry, 3(1):38-41.

Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos G, Volkow N, Taylor E, Casey BJ, Castellanos FX, and Wadhwa. (2007). Etiologic Subtypes of ADHD: Brain Imaging, Molecular Genetic and Environmental Factors and the Dopamine Hypothesis. Neuropsychology Review 17: 39-59.

Taylor E and Rogers JW.  (2005). Practitioner review: early adversity and developmental disorders.  J Child Psychology and Psychiatry.  46: 451-467.

Volkow ND, Ding YS, Fowler JS, Wang GJ, Logan J, Gatley JS et al. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in human brain. (1995). Arch Gen Psychiatry; 52:456-463.

Wang E, Ding YC, Flodman P, Kidd JR, Kidd KK, Grady DL, Ryder OA, Spence MA, Swanson JM, Moyzis RK. (2004). The genetic architecture of selection at the human dopamine receptor D4 (DRD4) gene locus. Am J Hum Genet 74(5):931-944.

Wender P. (1971). Minimal brain dysfunction in children. New York: Wiley-Liss.

Wigal SB, Nemet D, Swanson JM, Regino R, Trampush J, Ziegler MG, Cooper DM. (2003).  Catecholamine response to exercise in children with attention deficit hyperactivity disorder. Pediatr Res, 53(5):756-761.

Coaching children and teens with ADHD – It works!, Jodi Sleeper-Triplett, MCC

For many children and teens with AD/HD, coaching helps them learn techniques to be more focused, stay on task, and improve time management and organizational skills.  These skills are the building blocks for success in the future. By initiating the coaching process with school-aged children, we are able to keep students motivated and help them to build self-confidence and self-awareness during the formative years.

Coaching can be successful with children who have the cognitive ability to understand rewards and consequences.  The level of understanding varies by age and by the individual child. If the child can understand that completing a task, such as brushing teeth, will result in a sticker or token, a positive reward, it is possible to institute a coaching program. Many times the coaching is most successful when the parents, families and/or school personnel are actively involved in the process.

Together the coach and child collaborate with the “team” to design an appropriate coaching program. This process requires the coach helping the child to explore and identify motivators, in particular external ones that will be appealing to the child.

Readiness for the coaching process is critical to results/success in children. Chronological age is not always the best indicator for children with AD/HD. They may mature more slowly than their peers.  It is important to be sure that the child is ready to work independently with an “outsider”.  It is recommended that with young children, ranging in age from 5 to 8, that the coaching is done directly with the parents. In turn, the parents will implement the coaching plan and set the structures at home and at school.  Choose a coach who has had positive experiences working with the age group in which your child falls. When the child is slightly older, it may be helpful to arrange for coaching sessions with both the parents and the child, separately and as a team.

Teens are drawn to coaching once they understand that a coach is a non-judgmental, supportive partner. Most teens are interested in improving academic achievement and social skills; and in learning new organizational and time management strategies. Coaching can be very beneficial for teenagers. However, it requires involvement from the parents as well. Teens are not going to seek out a coach; the parents usually request services. Therefore, it is important to have them involved from the beginning.  As a part of the coaching agreement, the coach, the teen and the parents can agree to terms that will work for everyone involved. Creating and posting a written coaching contract, which includes clear expectations and rewards, is helpful for both parents and teens.

One of the more sensitive areas when working with teens is trust. It can become a problem if not addressed at the initial meeting. There must be a clear understanding of the issues that are to be held confidential between client and coach, and what information is shared with the parents. One solution to this potential problem is a weekly or bi-weekly update with the parents and teen. These updates provide information for the parents to discuss with their teen. Include a review of the goals, which have been previously agreed upon by the parents and the teen.

Suggestions for effective behavioral coaching for younger children are as follows:

– Target a behavior you wish to increase or improve.
– To increase the frequency of the behavior, select a reinforcement that is rewarding/appealing to the child, such as:
Attention and praise – use these as often as possible
Extra free time or special playtime  (this may include TV and video game time)
Tokens or stickers to be tallied up for weekly tangible rewards
Special one-on-one time with mom or dad
– Reward behaviors immediately and continuously.
– If the child does not demonstrate the target behavior, reward those behaviors that are very close to the
target behavior.
– Use of positive reinforcement should ALWAYS outnumber the use of any negative consequences. Use
negative consequences only after the positive reinforcement program has had ample time to be effective.
– The child should always be told what to do to avoid the negative consequences and the negatives should
be  clearly explained.
– Negative consequences should be delivered in a firm way, without emotion, lectures or long explanations.
– Ignoring inappropriate behavior can be used instead of delivering specific negative consequences, but only
if the behavior can be completely ignored and does not continue to escalate, cause harm or disruption.

Suggestions for effective goal setting for teens:

– Develop a contract. List the goals you wish to increase or improve. Sit down with your teen and work
out this list together. Be reasonable and set goals that are attainable and clear.
– Include a list of rewards and consequences. Be clear about the limits and set weekly or bi-weekly review time to assess progress. Be sure YOU stick to the plan to help your teen stick with the target goals.
– Be sure all parties sign the contract – parents and teen. Post it prominently.
– Use of positive reinforcement should ALWAYS outnumber the use of any negative consequences. Give the positive reinforcement program ample time to be effective.
– The teen should always be told what to do to avoid the negative consequences and the negatives should be clearly explained.
– Negative consequences should be delivered in a firm way, without emotion,lectures or long explanations.  The rules are set in the contract.
– To increase the frequency of success, select a reward/motivator that is appealing to the teen. Examples include:
Extra free time                                   Computer time
Time with friend                                 Reduction of work/chores
Dinner out                                          Money for a CD or video
Cash for gas                                       “Chips” toward a large purchase
– Reward progress frequently. Goals are reached in steps/stages. Each step deserves positive recognition. A  positive attitude is the key to success. It builds skills, self-confidence and self-esteem.
– If the teen does not demonstrate effort toward the target goals, review the goals. Are they too “lofty”, too difficult? Might it help to restate the goals or provide a new motivational tool? Work it out together, calmly.

Coaching is a beneficial tool for many children and teens. Choosing a coach who has experience working with children and teens, understands the intricacies of the AD/HD brain, medications and co-existing conditions is of the utmost importance. It is essential to work with a coach who has a good rapport with the child or teen. Be sure that the young client, especially teens, interview the coach before the process begins. The connection between coach and client, of any age, is essential for coaching to be a success.

____________________
Jodi Sleeper-Triplett is a master certified coach. She is an active member of CHADD, ADDA and of the American Coaching Association.
E-mail: Jstcoach@aol.com

Beatriz Duda, who attended Jodi Sleeper-Triplett’s coaching courses and workshops at CHADD International Conferences in Dallas (2005) and Chicago (2006), thanks her for this article which was published in Spanish in APDA’s electronic newsletter nº 14, issued on December 22, 2006.

ADHD and its comorbid disorders, Steven R. Pliszka, M.D.

ADHD is the most common behavioral disorder of childhood. Uncomplicated ADHD is a fairly straightforward disorder to diagnose and treat, but significant numbers of children and adolescents with ADHD have comorbid disorders. In these situations, the differential diagnosis is much more difficult and treatment can be quite complex. Over the last several decades, considerable research has been done to determine the prevalence of various comorbid diagnoses in children with ADHD. The most common comorbid diagnosis is that of oppositional defiant disorder, which can affect up to 60% of both boys and girls with ADHD. A smaller percentage of around 20% children with ADHD may develop conduct disorder. The prevalence rates for mood and anxiety disorders are somewhat more variable and less well defined, but at least a third of children with ADHD may develop an anxiety disorder. The rate of major depressive disorder (MDD) among children with ADHD has been estimated to range from 10 to 30%. Figures for the prevalence of mania on children with ADHD are somewhat more difficult to come by. Biederman and his colleagues found that up to 16% of their sample of ADHD children met criteria for mania.  In contrast, U.S. National Institute of Mental Health Multimodal Treatment Study of Children with  ADHD (MTA) did not find it necessary to exclude any children. Nonetheless, the MTA study did find a subgroup of ADHD children who showed very high levels of mood lability, aggression and hyperactivity. There is often disagreement among clinicians as to how many of these types of children truly have bipolar disorder.

Oppositional defiant disorder (ODD) is a pattern of negativistic, hostile and defiant behavior.  Children with ODD lose their tempers easily, argue with and frequently defy adults, and show irritating behavior toward peers. They tend to remain angry and resentful for long periods of time and are often spiteful or vindictive. ODD varies greatly in its severity. It is important to note that both ODD and conduct disorder are descriptive diagnosis that do not imply any particular etiology. This is in contrast to the diagnosis of ADHD which is a primarily neuro-biological condition. ODD may be secondary to ADHD —a child with ADHD may be so impulsive that he reacts with anger and poor judgment to any adult request or to any stressor. Therefore it is important that when the child meets criteria for both ADHD and ODD, the clinician should consider the ADHD to be primary. A number of studies have now shown that oppositional behaviors improved with treatment of the ADHD. This is true for all of effective treatments for ADHD, including both stimulants and atomoxetine.

Conduct disorder is a much more severe disorder, because it involves aggression and antisocial behavior. Children with ADHD and conduct disorder can be differentiated from those with ADHD alone by a number of factors. ADHD children with comorbid ODD/CD are also more likely to have learning disorders, particularly in the area of language. They are more likely to have a family history of antisocial behavior and are at greater risk for developing delinquent behavior during adolescence. Children with ADHD alone have a higher risk of developing substance-abuse disorders as adults, but children with ADHD and comorbid ODD/CD often began experimentation with illegal substances during early adolescence.

It is important to bear in mind that children with ADHD and comorbid ODD/CD respond as well to stimulants as children with ADHD alone. There is no evidence that stimulants or other medications used to treat ADHD increase aggression at appropriate doses except in very rare circumstances. There has also been considerable research on whether treatment with stimulants itself is a risk factor for substance abuse. Timothy Wilens and his colleagues reviewed a number of studies examining the rate of substance-abuse disorders in children with ADHD as a function of their stimulant treatment history. In fact, children with ADHD who never received treatment with medication had a higher rate of substance abuse than those who received treatment. This suggests that effective treatment of the ADHD may actually prevent the development of later substance-abuse disorders.

If oppositional and aggressive behaviors persist after the ADHD has been adequately treated, then several approaches should be considered. The clinician should consider adding a behavior management program. This usually consists of identifying key oppositional behaviors that need to be targeted —for instance a child needs to improve on behaviors such as not hitting a sibling, doing things first-time asked and doing his homework promptly. Each day he receives points from the parent based on how well he has performed these tasks. His weekly allowance is then based on how many points he earns during the week. If he earns a particularly high level of points, then some special privilege is awarded. In contrast, if the number of points earned is extremely low, then some restriction from weekend activities is called for. Alpha agonists such as clonidine or guanfacine have been combined with stimulant medication to treat temper outbursts and aggression. Adverse events such as dizziness and low blood pressure may occur however, and parents should be warned about these risks. In severe situations, where the aggressive behavior is dangerous to the patient or to others, then mood stabilizing or atypical antipsychotic medication may be appropriate. I will return to this topic after our discussion of ADHD and bipolar disorder.

Studies examining the prevalence of depressive disorders in children and adolescents with ADHD have yielded variable results. Roughly 11% of the patient’s in the MTA of ADHD study met criteria for major depressive disorder. In most studies of children with depression the rate of ADHD is approximately 30%. When a child presents with both ADHD and MDD the clinician faces the dilemma as to which condition to treat the first. The Texas Children’s Medication Algorithm Project (CMAP) recommends that the clinician assess each disorder and determine which is the most severe; this disorder should be the focus of initial psychopharmacologic management.   After the ADHD has been successfully treated, the clinician should assess whether the depressive symptoms remain problematic. If so, the clinician should begin treatment of the depression, usually with a serotonin reuptake inhibitor or institute a psychosocial intervention. In contrast, if the major depressive episode is quite severe (with a high level of the neurovegetative signs and/or suicidal ideation), then an antidepressant treatment should be the initial intervention. If the ADHD symptoms persist after the depression has remitted, then a stimulant may be added to the antidepressant regimen.

Up to one third of children with ADHD may also have a comorbid anxiety disorder. Quite often, these anxiety symptoms are mild in severity, and are related to the high level of stress that the child feels due to the dysfunction in his life. If the child’s worries are confined to the consequences of his ADHD behaviors, then the clinician can be reasonably optimistic that these anxiety symptoms will remit once the ADHD is under control. In other cases, however, the child will suffer from intense anxiety including phobias, obsessive-compulsive symptoms, or high levels of generalized anxiety associated with physiological symptoms such as racing heart, muscle tension or trouble sleeping. The Texas Children’s Algorithm Project (CMAP) recommended two different approaches for dealing with this situation. Atomoxetine has been shown to be effective for the treatment of both anxiety and ADHD, so it may be considered an initial treatment in this situation. Alternatively, the child may be treated with a stimulant, but if the anxiety symptoms do not remit after treatment of the ADHD, then a serotonin reuptake inhibitor can be added to the stimulant in the treatment of both anxiety and depressive disorders. One should not lose track of the fact that psychotherapy, particularly cognitive behavioral psychotherapy, is a very effective treatment for these disorders. Thus it is equally acceptable to combine pharmacologic treatment of the ADHD with a psychosocial intervention for the anxiety.

The treatment of the comorbidity of ADHD and bipolar disorder is perhaps one of the most difficult problems in child and adolescent psychiatry. For the purposes of this paper, we will include in the bipolar spectrum those patients with severe mood lability and aggression who may not have all of the classic DSM-IV symptoms of bipolar disorder. If a patient with ADHD is floridly manic, then mood stabilization is the priority and treatment of the ADHD should be deferred until this has occurred. In childhood and adolescence, lithium and valproate have been studied in controlled trials. Considerable open trial data suggests the efficacy of atypical antipsychotics.  Atypical antipsychotics have the advantage that they have a rapid onset of action and very flexible dosing. They generally require less laboratory monitoring than lithium or valproate.  Nonetheless they are associated with weight gain, a risk of diabetes, metabolic syndrome and elevated cholesterol. Children on atypical antipsychotics require monitoring of weight, and serum lipids at least twice a year.  When mood stabilization has been achieved then treatment of the ADHD can progress. In situations in which the diagnosis of the mania is less clear or in doubt, then the initial treatment should address the ADHD. If the putative mania symptoms resolve with successful treatment of the ADHD then it is unlikely that the child was in fact suffering from a bipolar disorder. In contrast, if the child’s inattentive impulsive and mood symptoms do not resolve with treatment of the ADHD or if the child worsens, then the clinician may move to treatment with anti-manic agents.

The final issue to address is the comorbidity of tics and ADHD. At one time, it was believed that tics were an absolute contraindication to stimulant treatment. Recent evidence has shown, however, that there is no statistically significant difference between placebo and stimulants in terms of their propensity to cause tics in children with comorbid ADHD and tic disorders.  However, most clinicians will encounter patients with comorbid ADHD and tics who have an increase in tics when they are started on a stimulant medication. In this situation, the clinician should try an alternative medication for the ADHD in an effort to control the ADHD symptoms without exacerbating the tics. In some situations however, the patient only responds to a stimulant in terms of the ADHD, but the stimulant worsens the number or severity of the tics.  If this occurs the clinician should consider adding an alpha-agonist to the stimulant medication.  Only in the most severe situations, should the clinician consider adding an atypical antipsychotic.

In summary ADHD can be comorbid with a wide range of disorders. Fortunately there is an equally diverse array of treatment approaches that the clinician can apply to these situations. As a result, we can substantially help these difficult patients.

____________________
Steven R. Pliszka M.D.,Professor and Vice Chair; Chief, Division of Child & Adolescent Psychiatry, Dept. of Psychiatry, University of Texas Health Science Center at San Antonio , San Antonio, Texas, USA.

Dr. Armando Filomeno, who met Dr. Pliszka at CHADD’s 17th Annual International Conference in Dallas, USA, October 2005, thanks the distinguished professional for this excellent article which he translated into Spanish for APDA’s electronic newsletter nº 12, issued on June 28, 2006.

CHADD: a voice for individuals with AD/HD and their families, Anne Teeter Ellison, Ed.D.

“CHADD (Children and Adults with Attention-Deficit/Hyperactivity Disorder) is the nation’s leading non-profit organization serving individuals with AD/HD and their families.”

Initially founded in 1987 by Dr. Harvey Parker, parents and professionals joined together to advocate for research on the nature and treatment of AD/HD, to disseminate the science of AD/HD to the public, and to advocate for the educational and legal rights of individuals with AD/HD. Today, we enjoy many accomplishments as a result of our collaboration with leading scientists, clinical/medical professionals, legal experts and educators around the globe.

Over the past nineteen years advances in the science of AD/HD has been remarkable. We now have a solid foundation for understanding the biogenetic, neurobiological, and neurochemical mechanisms of AD/HD. Research indicates that problems in behavioral inhibition or self-control are a result of dysfunction in frontal-striatal networks, while other brain regions (basal ganglia including the caudate nucleus and cerebellum) are also implicated. The evidence of genetic transmission of AD/HD, primarily involving the dopamine systems that innervate frontal-striatal regions is well established. Studies estimate that 70-95% of deficits in behavioral inhibition and inattention are genetically transmitted. Investigation of the interaction between environmental factors, subtle brain anomalies and genetic mutations is ongoing. Although not causal, we know traumatic life events, the presence of co-morbid disorders, and other psychosocial stressors (i.e., poverty, family dysfunction) complicate AD/HD. In the future it will be important for us to further clarify these interactions in an effort to create home, school and work environments that are AD/HD friendly and prevent the development of co-existing disorders that are so common in AD/HD. Researchers are beginning to address prevention strategies and these efforts will no doubt lead to more productive, fulfilling lives for persons with AD/HD.

CHADD has been fortunate to have strong relationships with the leading scientists and clinicians investigating and treating AD/HD across the national and international community. These individuals serve on our Professional Advisory Board (PAB), and provide invaluable advice by interpreting and communicating the science of AD/HD. Education is one of our major goals at CHADD, so it is important that we have accurate and up-to-date information which we publish in our fact sheets and other printed materials. Members of he PAB also serve on the editorial board of ATTENTION!â Magazine, contribute articles for the magazine and interpret controversies regarding assessment and treatment of AD/HD. I believe that these ongoing relationships and strong affiliations with the science of AD/HD help us communicate a message that the public can have confidence.

Over the past 15 years, there have been significant changes in federal laws regulating educational services for children and youths with AD/HD. In 1991, the U.S. Department of Education issued a Policy Memorandum with new regulations implementing the Individuals with Disabilities Education Act (IDEA) Amendments and for the first time explicitly incorporated AD/HD within the definition of “Other Health Impaired.” This memorandum provided access to special education services for children with significant impairment as a result of their attention-hyperactivity deficits. Two other federal laws — the Rehabilitation Act of 1973 (RA) and the Americans with Disabilities Act of 1990 (ADA) — prohibit discrimination against individuals with disabilities in higher education and the workplace. Adults with AD/HD may be eligible for protection and accommodations in higher education and the workplace. While protecting access to services and accommodations, we are routinely reminded that implementation of these laws often lags behind their enactment.  Through our public policy work, CHADD continues to monitor changes in federal laws in an effort to maintain these legal rights including the Re-Authorization of IDEA (2004).

Working together, persons with AD/HD and their families have a powerful, compelling story to tell. These life stories describe the daily challenges of living with AD/HD. E. Clarke Ross, the CEO of CHADD has emphasized the need for us “to build a social movement, CHADD continues to educate public policy makers emphasizing the lived experience of persons with AD/HD and their families.” Dr. Ross asserts that “CHADD will continue to advocate that consumer and family lived experience becomes an important part of health care decision making. For this reason, my April 2003 and February 2006 ATTENTION!® CEO columns focused on enhancing quality of treatment, including respect of the consumer and family lived experience.” In our effort to advocate for consumer and family driven care, we are bolstered by a number of significant national movements that are summarized in these messages.

Although we have made great strides since 1987, today we face continued attacks from anti-psychiatry groups who perpetuate the false notion that AD/HD is not a real disorder, that there is no science behind AD/HD, and we are needlessly drugging our kids. Persons with other mental health disorders face similar public attacks and misinformation. These attacks stigmatize mental illnesses, and discourage individuals and their families from seeking needed treatment. In an effort to counter these unfounded attacks with science and education, CHADD is working with other advocacy groups (Child and Adolescent Bipolar Foundation, CABF; National Alliance on Mental Illness, NAMI; Federation of Families; National Mental Health Association, NMHA) and professional organizations (American Academy of Child and Adolescent Psychiatry, AACAP; American Academy of Pediatrics, AAP; American Psychiatric Association, APA).

The power of persons with AD/HD and their families working together with researchers, clinical and medical professionals, and other advocacy groups can be formidable. Together we can dispel the myths, misinformation and stigma associated with AD/HD. We look forward to working with our international friends in your efforts to address similar challenges to the AD/HD community.

____________________
Phyllis Anne Teeter Ellison, Ed.D., Professor, Department of Educational Psychology; Director of Training, School Psychology Program. University of Wisconsin-Milwaukee, USA. CHADD President (2006).

Dr. Armando Filomeno, who met Dr. Anne Teeter Ellison at CHADD’s 17th Annual International Conference in Dallas, USA, October 2005, thanks CHADD President for this article which he translated into Spanish for APDA’s electronic newsletter nº 11, issued on March 15, 2006.

Girls with ADHD, Martha B. Denckla, M.D.

Whatever is distinctive about girls with ADHD must be viewed against the background facts concerning how girls in general differ from boys in general; the rate and consequent quality of development differs in well-known ways.  Girls talk earlier and are more easily brought into compliance with social demands like toilet training and sitting still for a meal.  Girls are more natural “people-pleasers” and less natural “environment-explorers” than are boys.  It is likely that adult positive reinforcement of verbal and social skills throws a bias into girls’ choices and then experience/nurture further imbalances girls’ cognitive styles.  In pre-school, only 20% of the little girls will seek out the block corner when free play choices are made available.  The play-time choices are further crowded by girls’ earlier ease acquiring reading and writing skills, heavily positively praised and reinforced.  The mix of nature, nurture, experience, and reinforcement starts so early that studies of gender differences must be interpreted with caution.

There is a biological/natural basis for observed developmental differences.  From mid-gestation, the traditional “quickening” point of pregnancy right on up to puberty (which arrives, on average, earlier in girls than in boys) the brains of girls are more mature in all the stages of cellular migration, proliferation, connectivity, pruning, and myelination.  The left side of the brain, so dominant in language and academic skills, gets such a “headstart” in girls that it may excessively dominate the right side, leading to the observed phenomena of girls excelling up to puberty in the language arts (emphasized in the skill set of elementary school) while boys are the “late bloomers” who emerge in the adolescence as the mathematics/science or even creative leaders. (Sometimes the male high-achievers in high school or college still cannot spell or write legibly!)  A particularly useful piece of my research on normal coordination, the PANESS,1 shows that the timed motor skills curve for kindergarten girls fits perfectly over the one for first grade boys, and this pattern persists through fifth grade!  It is because we have the “folk wisdom” of generations of observations of such developmental differences that we smile and shake our heads as we say, “Boys will be boys” but cannot come up with an analogous saying for a mischievous or messy little girl.

Consider then the plight of the little girl with ADHD, widely acknowledged and publicized mainly in the persons of little boys.  Traditional diagnostic schemes capture four times as many boys as girls under the ADHD heading; but recently it has been suggested that estimated ADHD prevalence figures of 3-5% of the school-age population are under-estimates, due to under-diagnosis of many girls with ADHD.  With the DSM-IV subtype of “predominantly inattentive” ADHD legitimized, some surveys redress the total diagnostic imbalance to the extent of three boys to every one girl with AD(H)D.

Still, it remains the case that girls with AD(H)D (the parenthetical H standing for the “predominantly inattentive” subtype) continue to be under-represented even as candidates for diagnosis because the girls are less disruptive, less likely to be oppositional, less blatantly or obviously off-task than the boys.  Girls, with or without AD(H)D, following their “people-pleaser” tendencies, may appear outwardly attentive to a teacher or go docilely to a bedroom to “do” homework while in actuality day-dreaming, doodling, writing notes to classmates in school, or “instant messaging” on the homework-intended home computer!  Girls with ADHD may appear “passive-aggressive” (and may eventually become so) by saying “yes” to requests to do chores and then forgetting to do them. Even when resembling boys in their ADHD-related physical restlessness or boisterousness, girls with ADHD are rarely as extreme in “physicality”.  Many clinicians, however, are eager to introduce into ADHD diagnostic schemata the physical “hyperactivity and impulsivity” domain of the mouth; girls with ADHD talk more, blurt more, boss more, and even eat more than other girls or their age!  Many clinicians see one subgroup of the current obesity-prone generation as girls with ADHD.  Thus, a genuine physical health risk attaches to girls with ADHD, just as accident-proneness attaches to boys with ADHD.

Girls with ADHD may be more troublesome at home than at school, more impaired socially among peers than academically (at least in elementary school).  They may control themselves in the structured school environment but “let down their hair” and irritate or agitate their families.  Their messiness, sloppy eating habits or even neglect of personal hygiene may be far more alarming to parents than would similar characteristics in a boy.  Psychological interpretations (often only partially relevant) other than possible ADHD may rise to greater prominence than warranted in a messy, sloppy, unkempt girl with ADHD.  Add obesity and a whole chain of social rejection events may complicate the girl’s development.  By middle school, social rejection can loom so large that emotional problems may overshadow the underlying ADHD; adding to the organizational deficits that ADHD (of even the mildest type) usually entail, the unhappy girl does not have the energizing and reinforcing social rewards of school life.  The clinician asked to search for ADHD (any subtype) in a girl of 11 to 14 years is doing a kind of neuropsychiatric “archaeology,” attempting by careful history-taking and neurological/neuropsychological examination to piece together the neurodevelopmental diagnosis underlying an emotional collapse.  Had the girl been referred earlier, the diagnosis of ADHD (not to speak of comorbid learning disabilities experienced by a third of those with ADHD) would have been more evident, less covered over by psychiatric complications and psychotropic drug effects.

What about treatment for girls with ADHD?  As with boys, ADHD requires a customized multimodal treatment program (home/parental management training, school program of accommodations, facilitating achievement, individual psychotherapy or tutoring or both, and adjunctive use of a stimulant medication). Notice the “final position” of medication, which is “neither curse nor cure” and must be customized for each patient at each age level and task demand/supply ratio, titrated very individually towards short-term target improvements and re-addressed frequently!  In this regard, the special needs of girls are simply that each set be described in terms of specific target signs or symptoms, acknowledging that in development all targets are “moving targets.”  The home, school, and individual therapeutic programs for girls with ADHD are even more important than the appropriate adjunctive medications, because the social-emotional complications of ADHD so insidiously overtake the girls before medication may even seem worthy of consideration.

In summary, girls with ADHD present with less-obvious, later-recognized, more “internal” forms of the disorder that Russell Barkley has so succinctly educated us to understand as revealing the nature of all kinds of “self-control.” The price paid by girls with ADHD for their less-obvious, later-recognized course is that emotional complications have more time to gain a foot-hold as comorbid depression or anxiety or “passive-aggressive personality” before correct multi-modal therapeutic programming can be implemented for the ADHD syndrome itself.  There is thus an urgent need to look at little girls with more sensitivity towards manifestations of ADHD, even of the non-disruptive, predominantly inattentive type, lest social rejection and “creeping” academic underachievement combine to make a much more seriously troubled adolescent girl who is, by the way, highly vulnerable to substance abuse.

____________________
Martha Bridge Denckla, M.D., Batza Family Endowed Chair; Director, Developmental Cognitive Neurology, Kennedy Krieger Institute;  Professor, Neurology, Pediatrics, Psychiatry, Johns Hopkins University School of Medicine.

Dr. Armando Filomeno —who was at the Johns Hopkins Hospital as a fellow when the KKI’s name was John F. Kennedy Institute for Habilitation of the Mentally and Physically Handicapped Child— thanks Dr. Denckla for this interesting article, which he translated into Spanish for APDA’s electronic newsletter nº 9, issued on September 15, 2005.

(1) Physical and Neurological Examination for Soft Signs (editor’s note).

What is neuropsychiatry?, Prof. G. E. Berrios

The word and its referents
Names help or hinder in all walks of life, particularly when they behave as drifting signifiers. For example, since it first appeared in fin de siècle France as a double-barrelled word (‘neuro-psychiatrie’), the meaning of ‘neuropsychiatry’ has repeatedly changed. By the interbellum period, and now converted in ‘neuropsychiatrie’, it referred to the clinical doings of medics trained both in neurology and psychiatry. By 1918, the word appeared in the Anglo-Saxon to name a form of: “Psychiatry which relates mental or emotional disturbance to disordered brain function”. My own definition is narrower: “discipline that deals with the psychiatric complications of neurological disease”. On the other hand, American usage is broader and tantamount to “biological psychiatry”.

Currently, and first and foremost “neuropsychiatry” refers to overlapping clinical disciplines sharing the belief that mental symptoms are produced at disordered brain sites. It is also used to make a professional claim vis-à-vis rival views of mental disorder such as psychoanalysis. Lastly, it creates a social and economic space wherein like-minded researchers safely congregate to usufruct their fashionable ideas.

The context
Whether there is ‘neuropsychiatry’ in a particular country, and whether it has a broad or narrow meaning will depend, to a large extent, upon the structure of its health services and on the quality of the relationship between neurology and psychiatry.

This is interesting and ironical as both specialisms are new. Alienism (the original name for psychiatry) and neurology developed by the 1830s and 1860s respectively as the direct result of the fragmentation of the old grand Cullean category of ‘Neurosis’, and of the broadening of the notion of ‘lesion’ which by the end of the century indistinctly referred to failures and solutions of continuity in putative ‘structural’, ‘physiological’ or ‘psychological’ domains. In Germany and France, the formation of alienists included neurological training and this facilitated the use of the term ‘neuropsychiatrist’. In Great Britain, on the other hand, and due to important socio-economic reasons (which there is no space to discuss), neurology and psychiatry had fully diverged by the 1880s. This means that for more than 90 years there was little communication between the two and that during the 1970s ‘neuropsychiatry’ had to be reinvented. It is not altogether surprising that those of us who were involved in such re-creation had both neurological and psychiatric training. This also explains why to this day we do not have in the UK a unified definition of neuropsychiatry. The American definition has become popular and this has encouraged psychiatrists holding a biological orientation au outrance to call themselves ‘neuropsychiatrists’. Others (like myself) continue defining neuropsychiatry in a narrow way. The former can be found in all venues of psychiatric care, the latter work in general hospitals and do a great deal of ‘neuro-liaison’ work (I introduced this term in a lecture given in Wellington, New Zealand some years ago).

Neuropsychiatry in Cambridge, UK
In keeping with the above, my own ‘neuropsychiatric’ clinical service is organize on the narrow view that neuropsychiatry is a branch of psychiatry that deals with the mental complications of neurological disease. I do not believe that such practice should in any way be interpreted as a statement about the nature of mental disorders in general. Even within the confines of my narrow definition, it seems clear that neurological patients who develop delusions, hallucinations, obsessions, sadness, anxiety, etc., etc. do so on account of a variety of mechanisms. On the one hand, there are the causal aetiologies. As my work on musical hallucinations and irritability states in Huntington’s disease patients showed years ago, a direct link can be demonstrated between symptom and brain site or CAG repeat, respectively. On the other hand, neurological patients have reasons for their symptoms, that is, neurological diseases happen to real people and hence have semantic contexts. This adds an entire new layer of meaning, hermeneutics and therapeutic response. Patients may show behavioural copies of mental symptoms and these do not have the same brain representation as the conventional symptoms.

Neuropsychiatric clinical work generates clinical templates which can be translated into research paradigms. There is nothing new in this and each university will use a different rhetoric to sell what they do. Some sell themselves as top-to-bottom research institutions (i.e. grand ideas governing action), others, are bottom-up ones (piecemeal, low level research converging upwards). This is the case of the Cambridge University Neuroscience Campus (the largest in the UK) which includes research institutes and a neuroimaging suite with inter alia 12 MRI magnets. My Neuropsychiatry Service (6 clinics) is linked with most of the research centres in the campus. For example, the PD Clinic provides patients for the large projects on receptor expression, fMRI, pharmacology, and neurosurgery. The HD Clinic is held in the ‘Brain Repair Centre’ where about 12 patients who have already received fetal cell implants in their caudate nuclei are followed up at 3 months intervals. The Traumatic Brain Damage clinic takes place in the ‘Oliver Zangwill Centre’, the leading cognitive neuropsychological rehabilitation clinic in Europe. The Sleep Disorders Clinic works closely with the ‘Respiratory Unit’ at Papworth hospital which includes the more advanced polysomnographic set up in the UK. The Memory Complaints Clinic services the large complex of memory research at the ‘Cognitive and Brain sciences Unit’, a ‘Medical Research Council’ facility where concepts such as executive functions and working memory were first developed; and my General Neuropsychiatry Clinic is linked up with the ‘Epilepsy Neurosurgical Unit’, the ‘Tinnitus Clinic’, etc. All these clinical- basic-sciences associations create ideal opportunities for translational research which has traditionally been the British way of developing new ideas.

The findings
Whatever the clinical context, neurological disorders are often accompanied by psychiatric appurtenances. The psychiatric component of some, like Parkinson’s disease, Multiple Sclerosis, Huntington’s disease, Wilson’s disease, Binswanger’s disease, etc., etc. has been known for a long time, and in some cases the severity and management of that component is more important for social re-entry than any motor or sensory disorder. In other cases, however, such as the taupathies, mitochondriopathies, CADASIL, X-Linked Adrenoleukodystrophy, etc. etc., not enough research has yet been carried out to identify the psychiatric component. In all situations, an intelligent practice provides the neuropsychiatrist with conundra whose resolution has direct relevance to psychiatry in general; two of such will be briefly discussed below.

The implications
Diagnostic conundrum
The neuropsychiatrist often finds that there is a lack of fit between the clinical phenomena met with in neuro-liaison work and the conventional psychiatric categories of ICD-10 and DSM IV. Neurological patients exhibit a variety of mental symptoms but these are often isolated and/or fleeting and rarely achieve critical mass to qualify for a ‘psychiatric diagnosis’. This raises theoretical and practical issues. The former have to do with their nature and formation mechanisms, the latter with their management / therapy. In the UK psychiatric therapies are currently tightly governed by guidelines which themselves are based on meta-analytic exercises and health economy evaluations. Likewise, psychiatric drugs are licensed for specific disorders and share with the guidelines the same sets of random clinical trials. Before the time guidelines started to be issued, psychiatric treatments were based on a combination of psychopharmacological knowledge, therapeutic imagination and specific negotiations between doctor and patient. This no longer obtains and unless a patient qualifies for a clear diagnosis he will not be offered medication as this might expose the clinician to legal action. In neuropsychiatry, this is particularly acute as neurological patients have mostly mental symptoms and only rarely mental disorders. Furthermore, the expression of such symptoms may be distorted by the presence of cognitive, expressional or emotional deficits directly related to the neuropathological lesions.

Behavioural copies and the problem of symptom-formation
In view of the above, the neuropsychiatrist often wonders whether the mental symptoms (and occasional mental disorders) that he/she comes across in the context of his specialized practice are, in fact, the same clinical phenomena as those seen in general psychiatry. For example, are the visual hallucinations of Parkinson’s disease or Lewy body dementia the same phenomena as those seen by a melancholic elderly with Cotard’s syndrome? Is the affective disorder associated with frontal lobe strokes the same as the common garden depressive illness? Is the mania triggered by steroid treatment the same as the mania of a bipolar disorder?

These comparisons go directly to the core of psychopathology and call into question the epistemic capacity of the language of psychiatry, that is, its discriminating value. Over the years, these questions have been responded in different ways. There was a time when the answer was that so-called organic hallucinations were different phenomena from psychiatric hallucinations. Currently, the predictable view is that they are, that they must be the same phenomena. Biological psychiatry is ruthless in its reductionism and efforts to impose its causal mechanism. Many neuropsychiatrists with long clinical experience in their trade, however, are no longer that cocksure. They often wonder about multiple aetiologies and about the existence of mechanisms that generate behavioural copies of the organic symptoms; or they postulate the hypothesis that the expressional systems in the human may have a narrow repertoire and act as final common pathways to a variety of triggers, some organic, some semantic.

Such psychopathological hypotheses generate fresh approaches to the analysis of mental symptoms which can only be undertaken by trained psychiatrists. They offer a natural and privileged space for psychiatric research. Unfortunately, it is one space that it is being abandoned by psychiatrists who want to become mini-neurologists, -radiologists or -geneticists. Descriptive psychopathology remains the fons et origo of all others ancillary disciplines in psychiatry, and hence such diaspora must be deeply regretted.

____________________
Prof. G.E. Berrios
BA (Oxford); DPhilSci (Oxford); MD; FRCPsych; FBPsS; FMedSci
Dr. Med. honoris causa [Heidelberg; San Marcos]
Consultant Neuropsychiatrist, Head Neuropsychiatry Service;
Reader in the Epistemology of Psychiatry, University of Cambridge
Addenbrooke’s Hospital (Box 189) Hills Road, Cambridge, UK, CB2 2QQ
Voice: 44 (0)1223-336965; Fax 44 (0)1223 336968; email: geb11@cam.ac.uk

Dr. Armando Filomeno —who translated this article into Spanish for its publication in the newsletter nº 8 issued by the Asociación Peruana de Déficit de Atención (APDA), on June 15.2005— thanks Dr. German Berríos, a distinguished peruvian physician and former classmate of his during their early years of medical studies at San Marcos University, for writing this excellent essay.

This article has been reproduced by: Revista Colombiana de Psiquiatría, vol.36 suppl.1, p.9-14,Oct. 2007. Link.